Institute of Chemistry and Molecular Engineering
The Institute of Chemistry and Molecular Engineering was established in 2014 at the Agricultural University of Georgia. The institute's employees have over 45 years of experience in organic and high molecular chemistry and molecular engineering. They have developed new polycondensation methods for synthesizing polymers, known as "activated" and "silyl" polycondensations. Using these methods, they have obtained nearly all major classes of heterochain polymers, including polyamides, polyesters, polyurethanes, polyurea, and polyheteroarylenes.
Particularly valuable are the original high molecular systems (polymers) developed by the institute's employees, which are based on natural α-amino acids and other non-toxic building blocks such as α-oxyacids, aliphatic diols, and dicarboxylic acids—these are known as biomimetic polymers. Various classes of biomimetics have been created, including polyamides, polyurethanes, polyureas, and different classes of pseudoproteins such as poly(ester amides), poly(ester urethanes), poly(ester ureas), and their co-polymers. In addition to this chemical diversity, three types of pseudoproteins can be synthesized: (I) Non-functional polymers: These do not contain functional groups in their macromolecules. (II) Functional polymers: These contain various types of functional groups (hydroxyl, amino, carboxyl, epoxy, saturated bonds, etc.) capable of undergoing different chemical or photochemical transformations. (III) Ionic polymers: These include polycations and polyanions.
The distinguishing feature of pseudoproteins, compared to canonical α-amino acid polymers such as naturally occurring polypeptides and proteins with protein molecular architecture, as well as synthetic polyamino acids, lies in their macromolecular structure. In pseudoproteins, α-amino acids are arranged non-canonically, and they contain different types of chemical bonds other than peptides. In other words, pseudoproteins have a non-proteinaceous molecular architecture. This characteristic makes pseudoproteins non-immunogenic, which makes them particularly attractive for biomedical applications as biocompatible, bioassimilable (similar to proteins), and biodegradable (absorbable) surgical materials and drug delivery/controlled release systems. Such systems also hold great potential in agriculture and the food industry, as well as in the development of eco-friendly materials.
It is important to note that pseudoproteins are characterized by a reasonable rate of biodegradation, achieved by including easily hydrolyzable ester bonds in the macromolecular chains. Various ester class polymers—such as poly(ester amides), poly(ester urethanes), and poly(ester ureas)—have been synthesized. These polymers exhibit a wide range of chemical, physicochemical, biochemical, and mechanical properties.
Compared to commercially successful biodegradable polymers (mainly polyesters) on the market, pseudoproteins exhibit several positive properties: (a) Enzyme-specific groups: These ensure enzyme-catalyzed biodegradation; (b) Availability and cost-effectiveness: The raw materials and monomers required for their synthesis are readily available and inexpensive; (c) Low melting points and solubility: With melting points ranging from 60-180°C and solubility in common organic solvents (such as ethanol, isopropanol, chloroform, methylene chloride, acetone, tetrahydrofuran, etc.), they are easily processed into products. (d) Diverse material properties: They exhibit a wide range of material properties, from water-soluble polymers, hydrogels, and micelle-forming amphiphilic polymers to hydrophobic, viscous, adhesive-forming, and bone-like super-strong materials. Pseudoproteins readily form micro- and nanoparticles, which show promise as drug-carrying/targeted delivery containers, nanofibers with great potential for medical applications, and porous films that serve as scaffolds for cell cloning. Additionally, the use of pseudoproteins is promising in the food industry, agriculture, agricultural product storage, and the production of widely used eco-friendly items.
The employees of the institute have received numerous international and national grants and have been invited to conduct research at American and European universities. In 2017, the director of the institute, Prof. R. Katsarava, was awarded the Gold Medal of the International Intellectual Property Organization (WIPO) as the best inventor. That same year, Prof. Katsarava was recognized as the best scientist of Georgia. In 2018, he received the Svante Arrhenius International Prize, and in 2019, he was elected as a member (academician) of the Georgian Academy of Sciences. In 2021, a group of institute employees (R. Katsarava, D. Tugushi, V. Beridze) was awarded the National Prize of Georgia for the development and implementation of pseudoproteins.
The institute operates a molecular engineering laboratory.
Contact
Ramaz Katsarava
წამლის გადამტანი დისპერსიული და ბაქტერიციდული სისტემები კატიონური ფსევდოპროტეინების საფუძველზე (2024)
შოთა რუსთაველის ეროვნული სამეცნიერო ფონდის 2023 წლის მაგისტრანტთა სასწავლო-კვლევითი პროექტის გრანტის [MR-23-193] საშუალებით თანამშრომლობა შედგა კატალონიის პოლიტექნიკურ უნივერსიტეტთან (UPC) (პროფ. ჯ პუიჯალი, ქიმიური ინჟინერიის დეპარტამენტი), ბარსელონა, ესპანეთი. აღნიშნული დეპარტამენტის დახმარებით მოხდა ახალი პოლიმერების - კფ-ების მოლეკულური მასების განსაზღვრა გელ-ქრომატოგრაფიით ჰექსფთორიზოპროპანოლში და პოლიმერების სტრუქტურის კვლევა ბმრ სპექტროსკოპიით.
მცენარეული სუბსტანცია მელილოტის შემცველი, ახალი ფსევდოპროტეინული კომპოზიცია (მყარი მალამო) პლასტიკური ქირურგიის და კოსმეტიკური პროცედურების არასასურველი შედეგების პრევენციისათვის (2023 – 2024)
პროექტის მიზანია საქართველოს მცენარეებიდან (Melilotus officinalis L., Juglans regia L., Trifolium praténse L., Chelidonium majus L., Maclura pomifera (Raf.) C.K.Schneid. ) მიღებული სუბსტანცია „მელილოტისა“ და ქართული წარმოების პროდუქტის - ფსევდოპროტეინის საფუძველზე ახალი პრეპარატის - ე.წ. მყარი მალამოს შექმნა. მალამოს საწყის ფორმა იქნება აეროზოლური (სპრეი), რომლის დატანა მოხერხებული იქნება პლასტიკური ოპერაციის/კოსმეტიკური მანიპულაციების შემდეგ ნებისმიერი ტოპოლოგიის კანის უბანზე, ნაწიბურის, ლაქების და სხვა გართულებების პრევენციისათვის, კოსმეტიკური პროცედურების ეფექტის ასამაღლებად. (პროექტი სრულდება ს. დურმიშიძის ბიოქიმიის ინსტიტუტთან თანამშრომლობით - მ.აბუთიძე, ნ. ომიაძე).
ფსევდო-პროტეინები ლეიცინის საფუძველზე (ლფპ) როგორც პერსპექტიული ბიოსამედიცინო მასალები: ლფპ ფირების უჯრედ-საყრდენი ფუნქციისა და ბიოდეგრადაციის დინამიკის შესწავლა (2022 – 2025)
მყარი პოლიმერული ფირები, რომელიც საყრდენი მასალის სახით (სკაფლდის) გამოიყენებაბიოსამედიცინო კვლებებში და საშუალებას იძლევა მოხდეს ისეთი in vitro მოდელების აწყობა, რომელიცუკეთ ასახავს ქსოვილის/ორგანოს ფიზიოლოგიასა და პათოლოგიას. ამგვარად, აქტუალურ საკითხად იქცაახალი ბიოპოლიმერების სინთეზი და მათი მომდევნო კლინიკური გამოყენება, ისევე როგორც შესაფერისსკაფოლდებზე დაფუძნებული პლატფორმების განვითარება რეგენერაციული და ტრანპლანტაციურიმედიცინისათვის. ბიოსამედიცინო ამოცანებისთვის ფართოდ იყენებენ ბუნებრივად არსებულბიოდეგრადირებად პოლიმერებს, რომლებსაც ქსოვილებთან მაღალი აფინურობა ახასიათებთ, მაგალითად - კოლაგენს. თუმცა, მნიშვნელოვანია აღინიშნოს, რომ ასეთ ბუნებრივ პოლიმერებს გააჩნიათრამდენიმე მნიშვნელოვანი ნაკლი, როგორიცაა: პარტიებს შორის ვარიაცია (batch-to-batch), დაავადებებისგადაცემის რისკი, იმუნური რეაქციები. ბუნებრივ პოლიმერებთან დაკავშირებული პრობლემებისგათვალისწინებით, აშკარაა, რომ ხელოვნური დეგრადირებადი (DPs) პოლიმერების შექმნა ახალპერსპექტივებს აძლევს ქსოვილოვანი ინჟინერიის დარგს. ასეთ სინთეზურ DPs-ს მნიშვნელოვანიუპირატესობები გააჩნიათ: არ არსებობს დაავადებების გადატანის რისკი, იმუნური პასუხი ან არვითარდება, ან ძალიან სუსტია. აუცილებელია, შეფასდეს მოცემული ფსევდო-პროტეინული ფირებისადჰეზიური თვისებები და ის, თუ რა გავლენას ახდენენ ისინი უჯრედების ფიზიოლოგიურ მდგომარეობაზე. ამ მიზნით ფსევდო-პროტეინულ მყარ სუბსტრატებზე გაზრდილ უჯრედებში უნდა შეფასდესფიზიოლოგიური პარამეტრები: უჯრედების ადჰეზია სუბსტრატთან, უჯრედების მიგრაცია, პროლიფერაციისინტენსიურობა, უჯრედების აქტივაცია, ხსნადი ფაქტორების წარმოქმნა. პროექტის ფარგლებშიდავადასტუროთ ჩვენი ჰიპოთეზა, რომ ფსევდო-პროტეინული ფირები ხელს უწყობენ ჭრილობებისშეხორცების პროცესს და, ასევე, დეტალურად შევისწავლოთ სუბსტრატის როლში გამოყენებული PPs-ისგავლენა უჯრედების ფუნქციურ მახასიათებლებზე. ამ მიზნით ჩვენ გამოვიყენებთ ცოცხალი უჯრედებისვიზუალიზაციისთვის ციფრული მიკროსკოპიის ტექნოლოგიებს, მაგალითად ოთხგანზომილებიანი იმიჯინგილაზერული კონფოკალური მიკროსკოპის (CLM) გამოყენებით. ეს დაგვეხმარება დავამტკიცოთ, რომფსევდო-პროტეინული ფირები შეიძლება განვიხილოთ როგორც პერსპექტიული მასალები რეგენარაციულიმედიცინისთვისა და ბიოინჟინერიისთვის.
ფსევდოპროტეინებით მოდიფიცირებული მულტიფუნქციური ბიოდეგრადირებადი პოლიამიდები და პოლიშარდოვანები (2022 - 2024)
დოქტორანტ ა. ვანიშვილი სადოქტორო კვლევის ფარგლებში მიმდინარეობს მოდიფიცირებული ფსევდოპროტეინების სინთეზი და კვლევა. ასეთი პოლიმერები პერსპექტულია როგორც პოლიფუნქციური მასალები როგორც მედიცინაში, ასევე ეკომეგობრული ფართო მოხმარების საგნების წარმოებაში.
ფსევდოპროტეინების საფუძველზე მიღებული ნანონაწილაკები წამლის თვალში მიწოდებისათვის: წამლით დატვირთვის ეფექტურობისა და წამლის გამოთავისუფლების შესწავლა (2021 – 2023)
პროექტის ფარგლებში ჩატარდა ნანოკონტეინერების სისტემატური კვლევა, მათი ზომების და მდგრადობის შესწავლა მიღების პირობებზე დამოკიდებულებით, ასევე ნანოკონტეინერების წამლებით დატვირთვის ეფექტურობის და დატვირთული ნანონაწილაკიდან წამლების გამოთავისუდლების პროფილის და კინეტიკის კვლევა ცდებში in vitro.
ამჟამად ჩვენი ინსტიტუტის ყოფილი მაგისტრანტი დ. მახარაძე აქტიურად იკვლევს ანტიკანცერული წამლებით დატვირთული, დამიზნული მოქმედების ფსევდოპროტეინულ ნანონაწილაკებს როგორც პოტენციურ მაღალწფექტურ კიბოსსაწინააღმდეგო პრეპარატებს. კვლევას აფინანსებს საქართველოს განათლებისა და მეცნიერების სამინისტრო.
ახალი ბიოდეგრადირებადი ანტიმიკრობული პოლიმერების სინთეზი (2021 – 2023)
პროექტის ფარგლებში დადგენილია კატიონური ფსევდოპროტეინების მაღალი უჯრედული ბიოთავსებადობა, მაღალი ტრანსფექციული აქტივობა, მათ შორის სელექციური ტრანსფექციის უნადი სხვადასხვა უჯრედების მიმართ, რაც პირველად იყო აღმოჩენილი.
ახალი ბიოდეგრადირებადი ანტიმიკრობული პოლიმერების სინთეზი (2021 – 2023)
პროექტის ფარგლებში შემუშავდა მაღალმოლეკულური ნაერთები სინთეზის ორიგინალური სტრატეგია საფეხურებრივი კლილ-პოლიმერიზაციის მეთოდით. მიღებულია რიგი ახალი, 1,2,3-ტრიაზოლური ციკლის შემცველი პოლიმერებისა, რომლებიც მათი არაციკლშემცველი ანალოგებისგან გამოირჩევიან ლღობის გაზრდილი ტემპერატურებით (60-100 oC-ით) და მაღალი მექანიკური სიმტკიცით. მიღებული 1,2,3-ტრიაზოლური ციკლის შემცველი პოლიმერები საინტერესოა შესაბამისი ანტიმიკრობული კატიონური პოლიმერების მისაღებად პოლიმერანალოგიური გარდაქმნების (კვატერნიზაციის) მეშვეობით.
წამლით დატვირთული ფსევდო-პროტეინული ნანონაწილაკები წამლის თვალში მიწოდებისათვის (2021)
პროექტის ფარგლებში ჩატარდა ნანოკონტეინერების სისტემატური კვლევა, მათი ზომების და მდგრადობის შესწავლა მიღების პირობებზე დამოკიდებულებით, ასევე ნანოკონტეინერების წამლებით დატვირთვის ეფექტურობის და დატვირთული ნანონაწილაკიდან წამლების გამოთავისუდლების პროფილის და კინეტიკის კვლევა ცდებში in vitro.
ამჟამად ჩვენი ინსტიტუტის ყოფილი მაგისტრანტი დ. მახარაძე აქტიურად იკვლევს ანტიკანცერული წამლებით დატვირთული, დამიზნული მოქმედების ფსევდოპროტეინულ ნანონაწილაკებს როგორც პოტენციურ მაღალწფექტურ კიბოსსაწინააღმდეგო პრეპარატებს. კვლევას აფინანსებს საქართველოს განათლებისა და მეცნიერების სამინისტრო.
ბიოდეგრადირებადი პოლიმერული ნანონაწილაკები როგორც წამლის მიმწოდებელი სისტემები (2021)
პროექტის ფარგლებში ჩატარდა ნანოკონტეინერების სისტემატური კვლევა, მათი ზომების და მდგრადობის შესწავლა მიღების პირობებზე დამოკიდებულებით, ასევე ნანოკონტეინერების წამლებით დატვირთვის ეფექტურობის და დატვირთული ნანონაწილაკიდან წამლების გამოთავისუდლების პროფილის და კინეტიკის კვლევა ცდებში in vitro.
ამჟამად ჩვენი ინსტიტუტის ყოფილი მაგისტრანტი დ. მახარაძე აქტიურად იკვლევს ანტიკანცერული წამლებით დატვირთული, დამიზნული მოქმედების ფსევდოპროტეინულ ნანონაწილაკებს როგორც პოტენციურ მაღალწფექტურ კიბოსსაწინააღმდეგო პრეპარატებს. კვლევას აფინანსებს საქართველოს განათლებისა და მეცნიერების სამინისტრო.
New biodegradable antimicrobial polymers based on cationic triazolium groups in the backbone (2019)
პროექტის ფარგლებში შემუშავდა მაღალმოლეკულური ნაერთები სინთეზის ორიგინალური სტრატეგია საფეხურებრივი კლილ-პოლიმერიზაციის მეთოდით. მიღებულია რიგი ახალი, 1,2,3-ტრიაზოლური ციკლის შემცველი პოლიმერებისა, რომლებიც მათი არაციკლშემცველი ანალოგებისგან გამოირჩევიან ლღობის გაზრდილი ტემპერატურებით (60-100 oC-ით) და მაღალი მექანიკური სიმტკიცით. მიღებული 1,2,3-ტრიაზოლური ციკლის შემცველი პოლიმერები საინტერესოა შესაბამისი ანტიმიკრობული კატიონური პოლიმერების მისაღებად პოლიმერანალოგიური გარდაქმნების (კვატერნიზაციის) მეშვეობით.
Elaboration of dexamethasone-loaded poly (ester amide) nanoparticles for ocular drug delivery (2019)
პროექტის ფარგლებში ჩატარდა ნანოკონტეინერების სისტემატური კვლევა, მათი ზომების და მდგრადობის შესწავლა მიღების პირობებზე დამოკიდებულებით, ასევე ნანოკონტეინერების წამლებით დატვირთვის ეფექტურობის და დატვირთული ნანონაწილაკიდან წამლების გამოთავისუდლების პროფილის და კინეტიკის კვლევა ცდებში in vitro.
ამჟამად ჩვენი ინსტიტუტის ყოფილი მაგისტრანტი დ. მახარაძე აქტიურად იკვლევს ანტიკანცერული წამლებით დატვირთული, დამიზნული მოქმედების ფსევდოპროტეინულ ნანონაწილაკებს როგორც პოტენციურ მაღალწფექტურ კიბოსსაწინააღმდეგო პრეპარატებს. კვლევას აფინანსებს საქართველოს განათლებისა და მეცნიერების სამინისტრო.
New biodegradable antimicrobial polymers based on cationic triazolium groups in the backbone (2019)
პროექტის ფარგლებში დადგენილია კატიონური ფსევდოპროტეინების მაღალი უჯრედული ბიოთავსებადობა, მაღალი ტრანსფექციული აქტივობა, მათ შორის სელექციური ტრანსფექციის უნადი სხვადასხვა უჯრედების მიმართ, რაც პირველად იყო აღმოჩენილი.
ბიოდეგრადირებადი ნანოკონტეინერები და მათი გამოყენება ოფთალმოლოგიაში წამლის ინტრავიტრეალური ადმინისტრირებისათვის (2018 – 2020)
შრესფ-ის გრანტის ფარგლებში თემატიკამ ჰპოვა შემდგომი განვითარება - მივიღეთ ფლუორესცენტული მარკერით დატვირთული ნანონაწილაკები. In vivo ცდებში ნაჩვენებია, რომ აღნიშნული ნანონაწილაკები გადიან ინტრაოკულარულ ბარიერებში და პერსპექტულია თვალში წამლების შეყვანისათვის მტკივნეული ინექციის გარეშე. შემდგომი შესწავლა აღნიშნული ნანონაწილაკები შესწავლა გაგრძელდა ორ DAAD & SRNSFG გრანტის ფარგლებში (მეცნ. თანამშრომელი თემურ ქანთარია), მოხდა ნანონაწილაკების შემდგომი კვლავა ინტრაოკულარული ბარიერების პენეტრაციისათის.
სადოქტორო კვლევა - სამედიცინო დანიშნულების ნანო- და მიკრონაწილაკები ბიოდეგრადირებადი ამინომჟავური პოლიმერების საფუძველზე: მიღება და კვლევა (2018)
წინამდებარე ნასრომი ეძღვნება სამედიცინო დანიშნულების ნანო- და მიკრომასშტაბური ნაწილაკების შემუშავებას ბუნებრივი ამინომჟავების შემცველი ბიოდეგრადირებადი პოლიმერების (Amino Acid Based Biodegradable Polymers - AABBP) - პოლიესტერამიდებისა და პოლიესტერშარდოვანების საფუძველზე და მიღებული ნაწილაკების კვლევას.
წამლის გადამტანი ნანო- და მიკრომასშტაბური კონტეინერების შემუშავება დღეისათვის მეტად აქტუალურია, ვინაიდან თანამედროვე მედიკამენტოზური თერაპიის ერთ-ერთ უმნიშვნელოვანეს პრობლემას წარმოადგენს წამლის მიზანმიმართული მოწოდება. წამლების გადამტანი კონტეინერების დასამზადებლად დღეისათვის გამოიყენება სხვადასხვა წარმოშობის დეგრადირებადი თუ არადეგრადირებადი პოლიმერები. ამ პოლიმერებს შორის ყველაზე პერსპექტიულად განიხილებოდა პოლიესტერების კლასის სინთეზური ბიოდეგრადირებადი პოლიმერები, როგორებიცაა პოლიკაპროლაქტონი, პოლირძის მჟავა, პოლიგლიკოლის მჟავა და სხვ. მაგრამ გაირკვა, რომ პოლიესტერების კლასის პოლიმერები დეგრადაციის შედეგად გამოყოფენ ტოქსიკურ მჟავა პროდუქტებს, რომლებიც იწვევენ არასასურველ ფენოტიპურ ცვლილებებს უჯრედებში. აღნიშნულის გამო ყურადღებას იქცევს ჰეტეროჯაჭვური ბიოდეგრადირებადი პოლიმერების სხვა კლასები - პოლიესტერამიდები და პოლიესტერშარდოვანები, რომლებსაც პოლიესტერებთან შედარებით ახასაითებთ უკეთესი ბიოშეთავსებადობა და სამასალე თვისებების უფრო ფართო სპექტრი.
სადისერტაციო კვლევის ფარგლებში მივიღეთ AABBP-ის ნანონაწილაკები ე.წ. პოლიმერის გამოლექვის/გამხსნელის გამოდევნის (ნანოპრეციპიტაციის) მეთოდის გამოყენებით და შევისწავლეთ მიღების პროცესში სხვადასხვა ფაქტორების, მათ შორის სხვადასხვა ფიზიკურ-ქიმიური პარამეტრების, გავლენა ნანონაწილაკების ფორმირებაზე (მათ ძირითად პარამეტრებზე - საშუალო დიამეტრსა და პოლიდისპერსიულობაზე) და დავადგინეთ ნანონაწილაკების მიღების ოპტიმალური პირობები. შედეგებმა გვიჩვენა, რომ ნანონაწილაკების მიღების პროცესში სხვადასხვა ფაქტორებისა და ფიზიკურ-ქიმიური პარამეტრების ცვლილებით შესაძლოა ნაწილაკების ძირითადი მახასიათებლების კონტროლირებადი ვარირება ფართო ზღვრებში. კვლევის ფარგლებში ასევე მივიღეთ 8L6 პოლიესტერამიდის (კვლევების საფუძველზე შერჩეული ოპტიმალური AABBP) მიკრონაწილაკები (მიკროკაფსულები), ე.წ. წყალი/ცხიმი/ცხიმი ორმაგი ემულსიის-გამხსნელის აორთქლების მეთოდით. მიკრონაწილაკების შემთხვევაშიც ჩავატარეთ სხვადასხვა ფაქტორების გავლენისა და მიღების ოპტიმალური პირობების დადგენის ანალოგიური სისტემატური კვლევა.
კვლევების საფუძველზე შევარჩიეთ ნანო- და მიკრონაწილაკების კონსტრუირებისათვის ოპტიმალური AABBP - პოლიესტერამიდი 8L6, რომელიც მიღებულია ამინომჟავა L-ლეიცინის, სებაცინის მჟავასა და 1,6-ჰექსანდიოლის საფუძველზე. აღნიშნული პოლიმერი წარმოქმნის ოპტიმალური პარამეტრების მქონე სტაბილურ და ბიოშეთავსებად ნანო- და მიკრონაწილაკებს. დავადგინეთ მიღებული ნანო- და მიკრონაწილაკების ძირითადი პარამეტრები (საშუალო დიამეტრი, პოლიდისპერსიულობა და ა.შ.) შესაბამისი ფიზიკურ-ქიმიური მეთოდების გამოყენებით და შევისწავლეთ მათი მორფოლოგია. კვლევის ფარგლებში ასევე შესწავლილია ნანო- და მიკრონაწილაკების სტაბილურობა სხვადასხვა პირობებში შენახვისას და დადგენილია მათი შენახვის ოპტიმალური პირობები. მივიღეთ ასევე PEG-ილირებული და დადებითად დამუხტული 8L6-ის და 8L68R6-ის ნანონაწილაკები. PEG-ილირება განვახორციელეთ ჩვენ მიერ შემუშავებული PEG-ილირების ახალი აგენტის - ბიოდეგრადირებადი PEG-ილირებული თანა-პოლიესტერამიდის ([8L6]0,5-[tES-L6]0,5) გამოყენებით. შედეგებმა გვიჩვენა, რომ PEG-ილირების ახალ აგენტს გააჩნია ზან-ის თვისებები - წარმოქმნის მიცელებს და ასტაბილიზირებს ნაონაწილაკებს. შესწავლილია ასევე AABBP-ს ნანონაწილაკების in vitro ბიოშეთავსებადობა სტაბილურ უჯრედულ ხაზებზე (HeLa, A549, RAW264.7 და Hepa 1-6 ხაზები).
სადოქტორო კვლევა - ახალი ჰეტეროჯაჭვური პოლიმერების სინთეზი და კვლევა საფეხურებრივი ზრდის "კლიკ" პოლიმერიზაციით (2018)
სპილენძ(I)-ით კატალიზირებული აზიდ-ალკინის ციკლომიერთების "კლიკ" რეაქცია (Copper(I) catalyzed azide-alkyne cycloaddition, CuACC) ინტენსიურადაა გამოყენებული ბიოქიმიასა და ბიოტექნოლოგიებში, პოლიმერულ ქიმიაში დენდრიმერების სინთეზსა და ფუნქციონალიზაციაში, პოლიმერების ფუნქციონალიზაციაში, ბლოკ-პოლიმერების, განტოტვილი და გაკერილი პოლიმერების სინთეზში და ა.შ. თუმცა, ძალიან მცირე რაოდენობის ნაშრომია მიძღვნილი ალიფატური ბიოდეგრადირებადი ტრიაზოლური პოლიმერების სინთეზისადმი საფეხურებრივი ზრდის პოლიმერიზაციით (სზპ) CuAAC კლიკ რეაქციის გამოყენებით.
წინამდებარე სამუშაო ეძღვნება ბიოსამედიცინო დანიშნულების ახალი ალიფატური ჰეტეროჯაჭვური ბიოდეგრადირებადი პოლიმერების - პოლიესტერებისა და პოლი(ესტერ ამიდების) სინთეზს CuAAC კლიკ სზპ-ს გამოყენებით. მაღალმოლეკულური, 1,2,3-ტრიაზოლური ციკლების შემცველი, "კლიკ" პოლიმერების მიღების მიზნით შევიმუშავეთ სზპ-ს ახალი სინთეზური სტრატეგია, რომელიც ეფუძნება CuAAC კლიკ რეაქციის გამოყენებას და, არსებულ სინთეზურ მიდგომებთან შედარებით, უფრო უნივერსალურია და საშუალებას იძლევა ფეთქებადი ბუნების ორგანული აზიდების გამოყენების გარეშე, უსაფრთხო ორსაფეხურიანი სამკომპონენტიანი რეაქციით დავასინთეზოთ სხვადასხვა ტიპის (AB ან AA-BB) და სხვადასხვა კლასის (პოლი-ესტერები, პოლი(ესტერ ამიდები), პოლი(ესტერ შარდოვანები და სხვ.) ჰეტეროჯაჭვური კლიკ პოლიმერები.
ახალი კლიკ პოლიმერების სინთეზის მიზნით განვახორციელეთ საკვანძო ბისალკინური მონომერების - დიკარბომჟავების დი-პროპარგიესტერების და დიაზიდური მონომერების წინამორბედების - ბის-ბრომაცეტილ წარმოებულების სინთეზი. დეტალურად შევისწავლეთ ორსაფეხურიანი სამკომპონენტიანი კლიკ სზპ-ს ძირითადი კანონზომიერებები და დავადგინეთ რეაქციის ოპტიმალური პარამეტრები და პირობები. დადგენილ ოპტიმალურ პირობებში ორსაფეხურიანი სამკომპონენტიანი კლიკ სზპ-თ პირველად მივიღეთ ძირითად ჯაჭვში 1,2,3 ტრიაზოლური ციკლების შემცველი, AA-BB-ტიპის კლიკ პოლიესტერები და პოლი(ესტერ ამიდები) და დავადგინეთ მათი სტრუქტურა FTIR და NMR სპექტრული ანალიზებით. დავადასტურეთ, რომ ორსაფეხურიანი სამკომპონენტიანი კლიკ სზპ-თ მიღება მხოლოდ 1,4-დიჩანაცვლებული 1,2,3-ტრიაზოლური ციკლები. შევისწავლეთ მიღებული კლიკ პოლიმერების ხსნადობა ორგანულ გამხსნელებში და ფირწარმოქმნის უნარი, განვსაზღვრეთ მათი მოლეკულური მასები და დაყვანილი სიბლანტის მნიშვნელობები. კვლევის შედეგად ვაჩვენეთ, რომ ახალი სინთეზური სტრატეგიის გამოყენებით შესაძლებელია მაღალმოლეკულური (Mw ≤ 73,7 kDa) კლიკ პოლიესტერების სინთეზი, რომლებსაც ახასიათებთ ელასტიკური ფირების წარმოქმნის უნარი.
გარდა ამისა, შევისწავლეთ მიღებული კლიკ პოლიმერების თერმული თვისებები და დავადასტურეთ, რომ მაკრომოლეკულის ძირითად ჯაჭვში ხისტი 1,2,3-ტრიაზოლური ციკლების ჩართვა საგრძნობლად აუმჯობესებს პოლიმერების თერმულ თვისებებს. უსპილენძო (კატალიზური სისტემების გამოყენების გარეშე), თერმული სზპ-თ მივიღეთ ტრიაზოლური პოლიესტერები და შევისწავლეთ მათი თვისებები. მიღებული "თერმული" პოლიესტერებისა და ანალოგიური კლიკ პოლიესტერების თვისებების შედარებით დავადასტურეთ ჩვენ მიერ შემუშავებული ახალი სინთეზური სტრატეგიის მაღალი ეფექტურობა და ვაჩვენეთ, რომ მხოლოდ კლიკ სზპ-ს მეშვეობით მიიღება ფასეული სამასალე თვისებების მქონე მაღალმოლეკულური ტრიაზოლური პოლიმერები. ბოლოს, ახალი კლიკ პოლიმერების საფუძველზე ნანოპრეციპიტაციის მეთოდით მივიღეთ ნანონაწილაკები, შევისწავლეთ მათი თვისებები და სტაბილურობა.
ბიოდეგრადირებადი ნანომატარებლების შემუშავება ოფთალმოლოგიური სამკურნალო პრეპარატების თვალში შეყვანისათვის (2017 - 2020)
შრსესფ-ის 2017 წლის ფუნდამენტური გრანტების კონკურსის ფარგლებში დაფინანსებული პროექტი სახელწოდებით „ბიოდეგრადირებადი ნანომატარებლების შემუშავება ოფთალმოლოგიური სამკურნალო პრეპარატების თვალში შეყვანისათვის“ შესრულებულია წარმატებით. მიღებულია ახალი ნანოზომის წამლის გადამტანი კონტეინერები (ნანონაწილაკები) ფსევდოპროტეინების საფუძველზე და შესწავლილია მათი ოკულარულ ბარიერებში შეღწევადობის უნარი. პროექტის შედეგად ნაჩვენებია, რომ მიღებული ბიოდეგრადირებადი ნანონაწილაკები პერსპექტიულია ოფთალმოლოგიური პრეპარატების თვალში შეყვანისათვის.
ახალი ბიოდეგრადირებადი კატიონური პოლიმერები არგინინისა და სპერმინის საფუძველზე - სამედიცინო დანიშნულების მრავალფუნქციური ბიომასალები (2017 – 2019)
პროექტის ფარგლებში დადგენილია კატიონური ფსევდოპროტეინების მაღალი უჯრედული ბიოთავსებადობა, მაღალი ტრანსფექციული აქტივობა, მათ შორის სელექციური ტრანსფექციის უნადი სხვადასხვა უჯრედების მიმართ, რაც პირველად იყო აღმოჩენილი.
ბიოდეგრადირებადი ნანონაწილაკების მიღება ამინომჟავრური პოლიესტერამიდების საფუძველზე, მათი მოდიფიცირება და in vitro ბიოთავსებადობის შესწავლა (2017 - 2018)
პროექტის მიზანი მდგომარეობდა ნანონაწილაკების მოდიფიცირებასა და მათი in vitro ბიოშეთავსებადობის და ბიოლოგიურ ბარიერებში განვლადობის (ბიოგანვლადობის) სისტემატური კვლევაში. ეს კვლევა მოიცავს ნანონაწილაკების ზედაპირის დაფარვას პოლიეთილენგლიკოლით ანუ ე.წ. PEG-ილირებას, ასევე ნანონაწილაკებისთვის დადებითი ზედაპირული მუხტის მინიჭებას, რაც მნიშვნელოვანია მათი ბიოშეთავსებადობისა და ბიოგანვლადობის გაუმჯობესების თვალსაზრისით. ნანონაწილაკების PEG-ილირებისათვის გამოყენებულ იქნა წყალში ხსნადი AABB პოლიმერი, რომელიც ახლახანაა მიღებული ეპოქსი-პოლესტერამიდის ამინო-PEG-ილირებით (მიღებულ წყალშიხსნად პოლიმერს აღვნიშნავთ როგორც PEG-PEA). In vitro ბიოშეთავსებადობის და უჯრედული შეღწევადობის შესწავლისათვის გამოყენებულ იქნა სამი სტანდარტული უჯრედული ხაზი: A549 (ადამიანის), RAW264.7 (თაგვის), Hepa 1-6 (თაგვის).
New arginine and spermine based cationic polymers as antimicrobial and gene transfection agents (2015)
პროექტის ფარგლებში დადგენილია კატიონური ფსევდოპროტეინების მაღალი უჯრედული ბიოთავსებადობა, მაღალი ტრანსფექციული აქტივობა, მათ შორის სელექციური ტრანსფექციის უნადი სხვადასხვა უჯრედების მიმართ, რაც პირველად იყო აღმოჩენილი.
კლიკ-ქიმიის გამოყენება მაკრომოლეკულურ და მაკროციკლურ სინთეზებში (2015)
პროექტის ფარგლებში შემუშავდა მაღალმოლეკულური ნაერთები სინთეზის ორიგინალური სტრატეგია საფეხურებრივი კლილ-პოლიმერიზაციის მეთოდით. მიღებულია რიგი ახალი, 1,2,3-ტრიაზოლური ციკლის შემცველი პოლიმერებისა, რომლებიც მათი არაციკლშემცველი ანალოგებისგან გამოირჩევიან ლღობის გაზრდილი ტემპერატურებით (60-100 oC-ით) და მაღალი მექანიკური სიმტკიცით. მიღებული 1,2,3-ტრიაზოლური ციკლის შემცველი პოლიმერები საინტერესოა შესაბამისი ანტიმიკრობული კატიონური პოლიმერების მისაღებად პოლიმერანალოგიური გარდაქმნების (კვატერნიზაციის) მეშვეობით.
ახალი კატიონური პოლიმერები არგინინის და სპერმინის საფუძველზე როგორც ანტიმიკრობული აგენტები (2014)
ცოდნის ფონდიდან მიღებული მეორე გრანტით, რომელიც ასევე მივიღეთ ინსტიტუტის ფუნქციონირების პირველ ეტაპზე, ინსტიტუტში განვითარდა მეორე სამეცნიერო მიმართულება - ბიოდეგრარირებადი კატიონური პოლიმერების კვლევა. ასეთი პოლიმერები თავდაპირველად განიხილებოდა როგორც ანტიმიკრობული აგენტები (რაც შემდგომში დადასტურდა ექსპერომენტული კვლევებით), თუმცა შემდგომში გაირკვა, რომ ეს პოლიმერები პერსპექტულია ასევე გენური მასალის უჯრედშიდა ტრანსპორტისათვის (ტრანსფექციისათვის), რაც მნიშვნელოვანია გენური თერაპიის შემდგომი განვითარებისათვის (გენური თერაპია გულისხმობს უჯრედის გენეტიკური აპარატის რეპარაციას სხვადასხვა დაავადებების მკურნალობისათვის.
ნანონაწილაკები ბიოდეგრადირებადი ამინომჟავური პოლიმერების საფუძველზე და მათი გამოყენება წამლების ინტრაოკულარული ტრანსპორტირებისათვის (2014)
ცოდნის ფონდიდან მიღებული გრანტით, რომელიც მივიღეთ ინსტიტუტის ფუნაციონირების პირველ ეტაპზე, ინსტიტუტში განვითარდა ბიოსამედიცინი ნანოტექნოლოგია. მიღებულ იქნა მდგრადი ნანონაწილაკები ამინომჟავური პოლიმერების (ფსევდოპროტეინების) საფუძველზე (ბიოდეგრადირებადი, წამლის გადამტანი ნანოკონტეინერები), რომლებიც პერსპექტულია წამლების ორგანიზმშიდა ტრანსპორტირებისათვის.
Ramaz Katsarava
Professor; Head of the Institute of Chemistry and Molecular EngineeringDavit Tughushi
Professor; Head of the Laboratory of Molecular Engineering at the Institute of Chemistry and Molecular EngineeringNino Zavradashvili
Associate Professor; Chief Scientist of the Laboratory of Molecular Engineering at the Institute of Chemistry and Molecular EngineeringNino Kupatadze
Associate Professor; Chief Scientist of the Laboratory of Molecular Engineering at the Institute of Chemistry and Molecular EngineeringTemur Kantaria
Assistant Professor; Scientist at the Institute of Chemistry and Molecular EngineeringMarekh Gverdtsiteli
Scientist at the Institute of Chemistry and Molecular EngineeringKsovreli, M., Kachlishvili, T., Skvitaridze, M., Nadaraia, L., Goliadze, R., Kamashidze, L., Zurabiani, K., Batsatsashvili, T., Kvachantiradze, N., Gverdtsiteli, M., Kantaria, T., Piot, O., Courageot, M.-P., Terryn, C., Tchelidze, P., Katsarava, R., Kulikova, N. (2024). Wound Closure Promotion by Leucene-based Pseudo-Proteins: an in vitro Study. Int. J. Mol. Sci., 25, 9641, https://doi.org/10.3390/ijms25179641
Makharadze, D., del Valle, L., Yousef, I., Kantaria, Tem., Katsarava, R., Puiggalí, J. (2024). PEGylated nanoparticles based on biodegradable poly (ester amides): Preparation and study of the core-shell structure by synchrotron-radiation- based FTIR microspectroscopy and electron microscopy. Polymers. MDPI
Kantaria, Tem., Kantaria, Teng., Zavradashvili, N., Makharadze, D., Tugushi, D., Katsarava, R. (2024). Polyamines and Arginine-Based Cationic Polymers as Antimicrobial Agents. Advances in Engineering Materials. Preparation for Sustainable Process Development. Apple Academic Press / CRC Press. A Novel Biodegradable Surfactant with Dual Function on the Basis of Amino Acid Based Epoxy-Poly(ester amide). Georgian Nat. Acad. Sci. Georgian Academy Press.
Jibladze, T., Palavandishvili, T., Katsarava, R. (2024). Pseudoprotein-based edible coating for enhancing the shelf life of Banana fruit. Georgian Nat. Acad. Sci. Georgian Academy Press.
Jibladze, T., Palavandishvili, T., Li Citra, K., Cinquanta, L., Katsarava, R. (2024). Effect of pseudoprotein-based edible coating on the shelf life of banana fruit. Italian Journal of Food Science.
Abutidze, M., Omiadze, N., Tugushi, D., Gurielidze, M., Kachlishvili, N. (2023). The Study of the Antimicrobial Properties of the Novel Cosmeceutical Remedy Components, Proceedings of the 4th International Scientific Conference «Foundations and Trends in Research», Copenhagen, Denmark, №4, 92-94.
Kantaria, Teng., Kantaria, Tem., Vanishvili, A., Kvinikadze, S., Klinger, D., Katsarava, R. (2023). Synthesis of new degradable AB-type polyesters with 1,2,3-triazole rings in the backbone via “click” step-growth polymerization. Asian Journal of Chemistry. Asian Publication Corporation.
Kantaria, Tem., Kantaria, Teng., Heiduschka, P., Eter, N., Tugushi, D., Katsarava, R. (2023). Dexamethasone loaded pseudo-protein nanoparticles for ocular drug delivery: Evaluation of drug encapsulation efficiency and drug release. Journal of Nanotechnology Hindawi.
Ksovreli, M., Kachlishvili, T., Mtiulishvili, T., Dzmanashvili, Batsatsashvili, T., Zurabiani, K., Tughushi, D., Kantaria,Tem., Nadaraia, L., Rusishvili L., Piot, O., Terryn, C., Tchelidze, P., Katsarava, R., Kulikova, N. (2023). Leucine-based Pseudo-Proteins (LPPs) as Promising Biomaterials: A Study of Cell-Supporting Properties. POLYMERS, 15, 3328. https://doi.org/10.3390/polym15153328
Kantaria, T., Baduashvili, L., Tugushi, D., Katsarava, R. (2021). Metronidazole-Loaded Pseudo-Protein Microspheres for Intravaginal Drug Delivery: Evaluation of Drug Encapsulation Efficiency and Drug Release. Bull. Georgian Nat. Acad. Sci., 15 (1), 76-82.
Zavradashvili, N., Kobauri, S., Puiggali, J., Katsarava, R. (2021). Functionalized Polymers: Functional Pseudo-Proteins (Review). Book chapter. In "Functionalized Polymers: Synthesis, Characterization and Applications", edited by the Dr. N.S.Chauhan, CRC press (Taylor and Francis) USA.
Zavradashvili, N., Otinashvili, G., Kantaria, T., Kupatadze, N., Tugushi, D., Saghyan, A., Mkrtchyan, A., Poghosyan, S., Katsarava, R. (2021). New Cationic Polymers Composed of Non-Proteinogenic α-Amino Acids. In: Advanced Materials, Polymers, and Composites: New Research on Properties, Techniques, and Applications. Chapter 19. O.Mukbaniani, T.Tatrishvili, M.J.M. Abadie, Eds. Apple Academic Press (AAP)
Katsarava, R. (2021). Pseudo-Proteins and Related Synthetic Amino Acid-Based Polymers Promising for Constructing Artificial Vaccine. In: Synthetic Peptide Vaccine Design Synthesis, Purification, Characterization Methods and New Generation Models. Chapter 10. M.Karahan, Ed. CRC press (Taylor and Francis) USA
Katsarava, R., Kantaria, Ten., Kobauri, S. (2021). Pseudo-proteins and related synthetic amino acid based polymers (Review). Mater, J. Educ., 43 (1-2), 33-80
Zavradashvili, N., Otinashvili, G., Tugushi, D., Kantaria, Ten., Kantaria, Tem, Kupatadze, N., Chkhaidze, E., Nepharidze, N., Saghyan, A., Mkrtchyan, A., Poghosyan, S., Katsarava, R. (2021). Synthesis of Pseudoproteins Based on Nonproteinogenic α-Amino Acids. Bull. Georgian Nat. Acad. Sci., 15(3), 41-47.
Zavradashvili, N., Puiggali, J., Katsarava, R. (2020). Artificial polymers made of α-amino acids – Poly(Amino Acid)s, Pseudo-Poly(Amino Acid)s, Poly (depsipeptide)s, and Pseudo-Proteins, Current Pharm.Design., 26 (5), 566-593
Zhang, W., Kantaria, T., Zhang, Y., Kantaria, T., Kobauri, S., Tugushi, D., Brücher, V., Katsarava, R., Eter, N., Heiduschka, P. (2020). Biodegradable nanoparticles based on pseudo-proteins show promise as carriers for ophthalmic drug delivery. J. Ocular Pharmacol. Therap. 36(6), 1-12 DOI: 10.1089/jop.2019.0148
Ochkhikidze, N., Titvinidze, G., Gverdtsiteli, M., Otinashvili, G., Tugushi, D., Katsarava, R. (2020). Synthesis of AABB-polydepsipeptides, poly (ester amide)s and functional polymers on the basis of O,O-diacyl-bis-glycolic acids. J. Macromol.Sci., Part A, Pure & Appl. Chem. 57(12), 854–864
Tsiklauri, G., Kantaria, Tem., Kantaria, Ten., Katsarava, R., Titvinidze, G. (2020). Synthesis of novel main-chain azo-benzene poly(ester amide)s via interfacial polycondensation. Int. J. Appl. Chem., 7(2), 63-69.
Moxon, S. R., Ferreira, M. J. S., dos Santos, P., Popa, B., Gloria, A., Katsarava, R., Tugushi, A. C., Serra, N., Hooper, M., Kimber, S. J., Fonseca, A.C., Domingos, M. A. N. (2020). A Preliminary Evaluation of the Pro-Chondrogenic Potential of 3D-Bioprinted Poly(ester urea) Scaffolds. Polymers, 12, 1478 doi:10.3390/polym12071478
Kantaria, Tem., Kantaria, Ten., Kobauri, S., Zhangb, W., Eter, N., Heiduschka, P., Kezeli, A., Chichua, G., Tugushi, D., Katsarava, R. (2020). Pseudoprotein-based nanoparticles show promise as carriers for ophthalmic drug delivery. Ann. Agrarian Sci. 18 43–53
Yousefzade, O., Katsarava, R., Puiggalí, J. (2020). Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics 5 49; doi:10.3390/biomimetics5040049
Díaz, A., del Valle, L.J., Rodrigo, N., Casas, M.T., Chumburidze, G., Katsarava, R., Puiggali, J. (2020) Antimicrobial Activity of Poly(ester urea) Electrospun Fibers Loaded with Bacteriophages. Book chapter 8, Current Perspectives on Chemical Sciences 5 97-116.
Wang, Y., Zavradashvili, N., Wang, Y., Pietropaolo, A., Song, Z., Bando, M., Katsarava, R., Nakano, T. (2020). Optically Active Polymers with Cationic Units Connected through Neutral Spacers: Helical Conformation and Chirality Transfer to External Molecule. Macromolecules 53 (22) 9916–9928.
Kharadze, D., Omiadze, T., Kirmelashvili, L., Katsarava, R. (2020). Artificial Polymers Made of α-Amino Acids – Biomimetics of Proteins. Proc. Georgian Nat. Acad. Sci., Biomed. Series, 46 5-6.
Puiggalí, J., del Valle, L.J., Katsarava, R. (2019). Other miscellaneous materials and their nanocomposites, Chapter 10. In “Nanomaterials and Polymer Nanocomposites”. Niranjan Karak Ed. Elsevier, 353-398.
Zavradashvili, N., Sarisozen, C., Titvinidze, G., Kantaria, Teng., Tugushi, D., Puiggali, J., Torchilin, V., Katsarava. R. (2019). Library of Cationic Polymers Composed of Polyamines and Arginine as Gene Transfection Agents, ACS Omega, 2090-2101
Kobauri, S., Kantaria, Tem., Kupatadze, N., Kutsiava, N., Tugushi, D., Katsarava, R. (2019). Pseudo-proteins: A new family of biodegradable polymers for sophisticated biomedical applications, Nano Technology & Nano Science Journal, 1(1): 37-42 Journal Impact Factor: 1.48
Kantaria, Tem., Kantaria, Ten., Kobauri, S., Ksovreli, M., Kachlishvili, T., Kulikova, N., Tugushi, D., Katsarava, R. (2019). A new generation of biocompatible nanoparticles made of resorbable poly (ester amide)s, Ann. Agrarian Sci., 17 49-58.
Lebedev, D. S., Kryukova, E.V., Ivanov, I. A., Egorova, N. V., Timofeev, N. D., Spirova, E.N., Tufanova, E. Yu., Kudryavtsev, D. S., Kasheverov, I. E., Zouridakis, M., Katsarava, R., Zavradashvili, N., Iagorashvili, I., Tzartos, S. J., Tsetlin, V.I. (2019). Oligoarginine Peptides, a New Family of nAChR Inhibitors. Molec. Pharmacol. September 6.
Puiggalí, J., Díaz, A., Katsarava, R. (2018) Bio-based aliphatic polyesters from dicarboxylic acids and related sugar and amino acid derivatives. In “Biodegradable and biocompatible polymer composites”. Navinchandra Shimpi Ed. Elsevier, Chapter 11, pp. 317-349. DOI: 10.1016/B978-0-08-100970-3.00011-0.
Kantaria, Ten., Kantaria, Tem., Titvinidze, G., Otinashvili, G., Kupatadze, N., Zavradashvili, N., Tugushi, D., Katsarava, R. (2018). New 1,2,3-Triazole Containing Polyesters via Click Step-Growth Polymerization and Nanoparticles Made of Them. Int. J. Polym. Sci.,V, Article ID 6798258.
Díaz, A., del Valle, L.J., Rodrigo, N., Casas, M.T., Chumburidze, G., Katsarava, R., Puiggali, J. (2018). Antimicrobial Activity of Poly(ester urea) Electrospun Fibers Loaded with Bacteriophages. Fibers, 6, 33; doi:10.3390/fib6020033.
Lamas, M.L., Lima, M.S., Pinho, A.C., Tugushi, D., Katsarava, R., Costa, E., Correia, I.J., Serra, A.C., Coelho, JF.J., Fonseca, A.C. (2018). Towards the development of miscible poly(ε-caprolactone)/ poly(ester amide)s electrospun mats. Polymer.
Calman, F., Pelit, P., Arayici, H.K., Buyukbayraktar, M., Karahan, Z., Mustafaeva, Katsarava, R. (2018). Development of Vaccine Prototype Against Zika Virus Disease of Peptide-Loaded PLGA Nanoparticles and Evaluation of Cytotoxicity. Intern. J. Peptide Res. Therap. Doi:10.1007/s10989-018-9753-2
Kobauri, S., Otinashvili, G., Kantaria, T., Tugushi, D., Kharadze, N., Kutsiava, J., Puiggali, Katsarava, R. (2018). New amino acid based biodegradable poly (ester amide)s via bis-azlactone chemistry. J.Macromol.Sci., Part A, Pure & Appl. Chem. 677-690. Journal Impact Factor 1.871
ხატისაშვილი, გ., ლომიძე, ე., ელიზბარაშვილი, ე. (2017). სახალისო ქიმიური ექსპერიმენტები. თბილისი, საქართველოს მაცნე, (სახელმძღვანელო).
Puiggalí, J., Katsarava, R. (2017). Bionanocomposites. In Clay-Polymer Nanocomposites, Ch. 7, Kh. Jlassi, M.M. Chehimi, S. Thomas, Eds., Elsevier Publihser.
Zavradashvili, N., Jokhadze, G., Gverdtsiteli, M., Tugushi, D., Katsarava, R. (2017). Biodegradable functional polymers composed of naturally occurring amino acids (Review). Res Rev Polym. 8(1), 105-128.
Kantaria, Tem., Kantaria, Ten., Kobauri, S., Ksovreli, M., Kachlishvili, T., Kulikova, N., Tugushi, D., Katsarava, R. (2017). In vitro biocompatibility and cell permeability study of biodegradable nanoparticles made of amino acid based poly (ester amide). J. Chem. Eng. Process Technol., 8:4 (Suppl).
Kantaria, Ten., Kantaria, Tem., Otinashvili, G., Kupatadze, N., Zavradashvili, N., Tugushi, D., Katsarava, R. (2017). Synthesis of new biodegradable clicking polyesters via tricomponent step-growth polymerization. J. Chem. Eng. Process Techn., 8:4 (Suppl).
Memanishvili, T., Kupatadze, N., Tugushi, D., Katsarava, R., Wattananit, S., Hara, N., Tornero, D., Kokaia, Z. (2016). Generation of cortical neurons from human induced-pluripotent stem cells by biodegradable polymeric microspheres loaded with priming factors. Biomed. Mater. 11, 025011. doi:10.1088/1748-6041/11/2/025011.
del Valle, L.J., Franco, L., Katsarava, R., Puiggalí, J. (2016). Electrospun biodegradable polymers loaded with bactericide agents., 52-87.
Katsarava, R., Kulikova, N., Puiggalí, J. (2016). Amino Acid Based Biodegradable Polymers – promising materials for the applications in regenerative medicine (Review). J. J. Regener. Med., 1(1): 012.
Kantaria, Tem., Kantaria, Teng., Kobauri, S., Ksovreli, M., Kachlishvili, T., Kulikova, N., Tugushi, D., Katsarava, R. (2016). Biodegradable nanoparticles made of amino acid based ester polymers: preparation, characterization, and in vitro biocompatibility study. Appl. Sci. 6, 444; doi:10.3390/app6120444
ოჩხიკიძე, ნ., მათითაიშვილი, თ., დიდებულიძე, კ., ელიზბარაშვილი, ე. (2016). ახალი არატოქსიკური ფრაგმენტების შემცველი აზომეთინები. საქართველოს მეცნიერებათა ეროვნული აკადემია. ქიმიისა და ქიმიური ტექნოლოგიების განყოფილება. გვ-70-71. თბილისი
Díaz, A., del Valle, L.J., Tugushi, D., Katsarava, R., Puiggalí, J. (2015). New poly (ester urea) derived from L-leucine: electrospun scaffolds loaded with antibacterial drugs and enzymes. Materials Science and Engineering C, 46 450–462.
Katsarava, R., Puiggali, J. (2015). Leucine Based Polymers: Synthesis and Applications. Book chapter in: Leucine: Biology, Consumption and Benefits. Biochemistry Research Trends, S.R. Newman, Ed., NOVA Sci. Publisher.
Murase, S.K., Lv, L.-P., Kaltbeitzel, A., Landfester, K., del Valle, L.J., Katsarava, R., Puiggali, J., Crespy, D. (2015). Amino acid-based poly (ester amide) nanofibers for tailored enzymatic degradation prepared by miniemulsion-electrospinning. RSC Adv., 5, 55006-55014. DOI: 10.1039/C5RA06267E
Murase, S.K., del Valle, L.J., Kobauri, S., Katsarava, R., Puiggalí, J. (2015). Electrospun fibrous mats from a L-phenylalanine based poly (ester amide): Drug delivery and accelerated degradation by loading enzymes, Polym. Degrad. Stabil., 119, 275-287.
Kharadze, D., Memanishvili, T., Mamulashvili, K., Omiadze, T., Kirmelashvili1, L., Lomtatidze, Z., Katsarava, R. (2015). In Vitro Antimicrobial Activity Study of Some New Arginine-based Biodegradable Poly (Ester Urethane)s and Poly (Ester Urea)s. J. Chem. Chem. Eng. 9, 524-532 doi: 10.17265/1934-7375/2015.08.008
Zavradashvili, N., Memenishvili, T., Kupatadze, N., Baldi, L., Shen, X., Tugushi, D., Wandrey, C., Katsarava, R. (2014). Cell compatible arginine containing cationic polymer: one-pot synthesis and preliminary biological assessment. Springer Book Series-Advances in experimental medicine and biology: Infectious Diseases and Nanomedicine, 59-73.
Memanishvili, T., Zavradashvili, N., Kupatadze, N., Tugushi, D., Gverdtsiteli, M., Torchilin, V.P., Wandrey, C., Baldi, L., Manoli, S.S., Katsarava, R. (2014). Arginine-based biodegradable ether-ester polymers of low cytotoxicity as potential gene carriers. Biomacromolecules, 15, 2839-2848.
Díaz, A., Katsarava, R., Puiggalí, J. (2014). Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly (ester amide) (Review). Int. J. Mol. Sci. 15, 7064-7123.
Haddad, L.El., Ben Abdallah, N., Plante, P-L., Dumaresq, J., Katsarava, R., Labrie, S., Corbeil, J., Gelais, D.St., Moineau, S. (2014). Improving the safety of Staphylococcus aureus polyvalent phage by their production on a Staphylococcus xylosus strain. PLoS ONE 9(7): e102600. doi:10.1371/journal.pone.0102600
Planellas, M., Pérez-Madrigal, M.M., del Valle, L.J., Kobauri, S., Katsarava, R., Alemán, C., Puiggalí, J. (2014). Microfibres of conducting polythiophene and biodegradable poly (ester urea) for scaffolds. Polymer Chemistry. 6, 925-937. DOI: 10.1039/c4py01243g.
Samsoniya, Sh., Zurabishvili, D., Bukia, T., Lomidze, M., Gogolashvili, I., Buzaladze, G., Elizbarashvili, E., Kazmaier, U.(2014). Synthesis and studies of some adamantane containing benzylidenes, benzimidazoles and dipeptides. 3-rd International Conference of Organic Chemistry (ICOC-2014) "Organic Synthesis - Driving Force of Life Development". Tbilisi, Georgia. 57-59
Zavradashvili, N., Jokhadze, G., Gverdtsiteli, M., Otinashvili, G., Kupatadze, N., Gomurashvili, Z., Tugushi, D., Katsarava, R. (2013). Amino Acid Based Epoxy-Poly(Ester Amide)s - a New Class of Functional Biodegradable Polymers: Synthesis and Chemical Transformations. J.Macromol.Sci., Part A, Pure & Appl. Chem. 50(5), 449-465
Elizbarashvili, E., Lagvilava, I., Matitaishvili, T., Datukishvili, L. (2012). Novel macrocyclic fluorescents dyes. 7-th Eurasian meeting on heterocyclic chemistry. Bogazici University, Istanbul, Turkey. p. 19